EE 330
Homework Assignment 4
Spring 2024 (Due Friday Feb 9 at noon)

Note: Key characteristics of two different processes are appended at the end of this assignment.

Problem 13.1 of Weste and Harris (WH)

Problem 23.2 of WH

Problem 3 If a transistor of length 7 nm and width 14 nm has a gate oxide thickness of $25 \mathrm{~A}^{\circ}$, how many silicon dioxide molecules will be needed for the gate oxide?

Problem 4 A section of global interconnect (See Fig. 3.12 of WH) is shown below where the SiO_{2} insulating material has been removed. If this interconnect were made of aluminum and is $1000 \mu \mathrm{~m}$ long, 20 nm wide, and 40 nm thick, what would be the resistance of the interconnect?

Problem 53.5 of WH

Problem 6 How many 12 inch wafers can be obtained from a 2 m silicon pull? Assume the kerf width when a wire saw is used is to cut the wafers is $150 \mu \mathrm{~m}$. In solving this problem, state and use a typical value for the wafer thickness.

Problem $7 \quad$ A first-order RC filter is shown. The 3-dB band edge of this filter is given by $\omega_{3 d B}=\frac{1}{R C}$. Assume Poly 1 with a silicide block is used to make the resistor and the capacitor is a Poly Insulator Substrate capacitor. This filter is to be fabricated in the TSMC 0.18μ CMOS process that is characterized by the parameters attached to this assignment.
a) Design this circuit and estimate the area required to implement this filter in your design if the 3 dB band edge is to be located at 1 K Hz and the capacitor value is 8 pF .
b) If the resistor is too big or the capacitor is too big, the area required to realize this filter becomes very large. Determine the value of R and C that will minimize the total area and compare the area required for the "minimal area" design with that you required in part a). Use a serpentine layout for the resistor.

Problem 8 Consider the layout of a transistor shown below where red is polysilicon and green is n -active. Rulers with dimensions in $\mu \mathrm{m}$ are shown.

a) What is the drawn length and width of the transistor?
b) Assume positive photoresist is used pattern the polysilicon region to protect it during the polysilicon etch. If the photoresist is under-exposed so that the edges move by $0.1 \mu \mathrm{~m}$ from the desired location and the photoresist development is perfect, and the polysilicon is under-etched so that the edges move by $0.1 \mu \mathrm{~m}$, what will be the actual length and width of the transistor? (neglect any lateral diffusion that may occur)
c) Repeat part b) if negative photoresist is used.

Problem 9 An aluminum interconnect $250 \mu \mathrm{~m}$ long and $2 \mu \mathrm{~m}$ wide has a measured resistance of 25Ω. Determine the thickness of the aluminum interconnect and the sheet resistance. If a copper interconnect has the same thickness and the same width
as the aluminum interconnect, how long would it be if it also had the same resistance?

Problem 10 Thermal oxide growth of field oxide causes the wafer surface to become somewhat nonplanar. If $5000 \AA$ of field oxide is thermally grown, what is the difference in the thickness of the wafer between regions where field oxide is present and where it is absent. In solving this problem, state and use a typical value for the wafer thickness.

Measured Parameters for an ON $0.5 \mu \mathrm{~m}$ CMOS Process

MINIMUM Vth	3.0/0.6		0.78			93 vo	volts				
SHORT	20.0/0.6										
Idss			439		-238		uA/um				
Vth			0.69			90 vo	volts				
Vpt			10.0		-10		volts				
WIDE		.0/0.6									
Ids 0			<2.		<2	5 pA	um				
LARGE		/ 50									
Vth						95 vo	ts				
Vjbkd			11.		-11	7 vo	ts				
Ijlk			<50.		<50	0 pA					
Gamma			0.			58 V ${ }^{\text { }}$. 5				
K^{\prime} (Uo*Cox/2)			56.		-18	4 uA	$\mathrm{V}^{\wedge} 2$				
Low-field Mobility			474.		153	46 cm	2/V*s				
COMMENTS: XL_AMI_C5F											
FOX TRANSISTORS Vth	GATEPoly		$\begin{gathered} \mathrm{N}+\text { ACTIVE } \\ >15.0 \end{gathered}$		$\begin{gathered} \text { P+ACTIVE } \\ <-15.0 \end{gathered}$		UNITS volts				
PROCESS PARAMETERS	N+ACTV	P+ACTV			POLY	PLY	Y2_HR	POLY2	MTL1	MTL2	UNITS
Sheet Resistance	82.7	103.2	21.7		84	39.7	0.09	0.09	ohms/sq		
Contact Resistance	56.2	118.4	14.6			24.0		0.78	ohms		
Gate Oxide Thickness	144								gstrom		
PROCESS PARAMETERS		MTL3	$N \backslash P L Y$		N_WE	L UN	TS				
Sheet Resistance		0.05	824			O	ns/sq				
Contact Resistance		0.78									

COMMENTS: $N \backslash P O L Y$ is N-well under polysilicon.

CAPACITANCE PARAMETERS	N+ACTV	P+ACTV	POLY	POLY2	M1	M2	M3	N_WELL	UNITS
Area (substrate)	429	721	82		32	17	10	40	aF/um^2
Area (N+active)			2401		36	16	12		aF/um^2
Area (P+active)			2308						aF/um^2
Area (poly)				864	61	17	9		$\mathrm{aF} / \mathrm{um}^{\wedge} 2$
Area (poly2)					53				aF/um^2
Area (metal1)						34	13		aF/um^2
Area (metal2)							32		$a \mathrm{~F} / \mathrm{um}^{\wedge} 2$
Fringe (substrate)	311	256			74	58	39		aF/um
Fringe (poly)					53	40	28		aF/um
Fringe (metall)						55	32		aF/um
Fringe (metal2)							48		aF/um
Overlap (N+active)			206						aF/um
Overlap (P+active)			278						aF/um

MOSIS WAFER ACCEPTANCE TESTS for TSMC $0.18 \mu \mathrm{~m}$ CMOS Process

CAPACITANCE PARAMETERS

	$\mathrm{N}+$	P+	POLY	M1	M2	M3	M4	M5	M6	R_W	D_N_W	M5P	N_W	UNITS
Area (substrate)	998	1152	103	39	19	13	9	8	3		$\overline{129}$		127	aF/um^2
Area (N+active)			8566	54	21	14	11	10	9					aF/um^2
Area (P+active)			8324											aF/um^2
Area (poly)				64	18	10	7	6	5					aF/um^2
Area (metal1)					44	16	10	7	5					aF/um^2
Area (metal2)						38	15	9	7					aF/um^2
Area (metal3)							40	15	9					aF/um^2
Area (metal4)								37	14					aF/um^2
Area (metal5)									36			1003		aF/um^2
Area (r well)	987													aF/um^2
Area (d well)										574				$a F / u m{ }^{\wedge} 2$
Area (no well)	139													$a F / u m{ }^{\wedge} 2$
Fringe (substrate)	244	201		18	61	55	43	25						aF/um
Fringe (poly)				69	39	29	24	21	19					aF/um
Fringe (metal1)					61	35		23	21					aF/um
Fringe (metal2)						54	37	27	24					aF/um
Fringe (metal3)							56	34	31					aF/um
Fringe (metal4)								58	40					aF/um
Fringe (metal5)									61					aF/um
Overlap (P+active)			652											aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	0.74	volts
Vinv	1.5	0.78	volts
Vol $(100 \mathrm{uA})$	2.0	0.08	volts
Voh $(100 \mathrm{uA})$	2.0	1.63	volts
Vinv	2.0	0.82	volts
Gain	2.0	-23.33	
Ring Oscillator Freq.			
D1024_THK (31-stg,3.3V)	338.22	MHz	
DIV1024 (31-stg,1.8V)	402.84	MHz	
Ring Oscillator Power			
D1024_THK (31-stg,3.3V)	0.07	uW/MHz/gate	
DIV1024 (31-stg,1.8V)	0.02	uW/MHz/gate	

COMMENTS: DEEP_SUBMICRON

.MODEL CMOSP PMOS (LEVEL	$=49$
+VERSION	$=3.1$	TNOM	$=27$	TOX	$=4 \mathrm{E}-9$
+XJ	$=1 \mathrm{E}-7$	NCH	$=4.1589 \mathrm{E} 17$	VTH0	$=-0.3708038$
+K1	$=0.5895473$	K2	$=0.0235946$	K3	$=0$
+K3B	$=13.8642028$	W0	$=1 \mathrm{E}-6$	NLX	$=1.517201 \mathrm{E}-7$
+DVT0W	$=0$	DVT1W	$=0$	DVT2W	$=0$
+DVT0	$=0.7885088$	DVT1	$=0.2564577$	DVT2	$=0.1$
+U0	$=103.0478426$	UA	$=1.049312 \mathrm{E}-9$	UB	$=2.545758 \mathrm{E}-21$
+UC	$=-1 \mathrm{E}-10$	VSAT	$=1.645114 \mathrm{E} 5$	A0	$=1.627879$
+AGS	$=0.3295499$	B0	$=5.207699 \mathrm{E}-7$	B1	$=1.370868 \mathrm{E}-6$
+KETA	$=0.0296157$	A1	$=0.4449009$	A2	$=0.3$
+RDSW	$=306.5789827$	PRWG	$=0.5$	PRWB	$=0.5$
+WR	$=1$	WINT	$=0$	LINT	$=2.761033 \mathrm{E}-8$
+XL	$=0$	XW	$=-1 \mathrm{E}-8$	DWG	$=-2.433889 \mathrm{E}-8$
+DWB	$=-9.34648 \mathrm{E}-11$	VOFF	$=-0.0867009$	NFACTOR	$=2$
+CIT	$=0$	CDSC	$=2.4 \mathrm{E}-4$	CDSCD	$=0$
+CDSCB	$=0$	ETA0	$=1.018318 \mathrm{E}-3$	ETAB	$=-3.206319 \mathrm{E}-4$
+DSUB	$=1.094521 \mathrm{E}-3$	PCLM	$=1.3281073$	PDIBLC1	$=2.394169 \mathrm{E}-3$
+PDIBLC2	$=-3.255915 \mathrm{E}-6$	PDIBLCB	$=-1 \mathrm{E}-3$	DROUT	$=0$
+PSCBE1	$=4.881933 \mathrm{E} 10$	PSCBE2	$=5 \mathrm{E}-10$	PVAG	$=2.0932623$
+ DELTA	$=0.01$	RSH	$=7.5$	MOBMOD	$=1$
+PRT	$=0$	UTE	$=-1.5$	KT1	$=-0.11$
+KT1L	$=0$	KT2	$=0.022$	UA1	$=4.31 \mathrm{E}-9$
+UB1	$=-7.61 \mathrm{E}-18$	UC1	$=-5.6 \mathrm{E}-11$	AT	$=3.3 \mathrm{E} 4$
+WL	$=0$	WLN	$=1$	WW	$=0$
+WWN	$=1$	WWL	$=0$	LL	$=0$
+LLN	$=1$	LW	$=0$	LWN	$=1$
+LWL	$=0$	CAPMOD	$=2$	XPART	$=0.5$
+CGDO	$=6.52 \mathrm{E}-10$	CGSO	$=6.52 \mathrm{E}-10$	CGBO	$=1 \mathrm{E}-12$
+CJ	$=1.157423 \mathrm{E}-3$	PB	$=0.8444261$	MJ	$=0.4063933$
+CJSW	$=1.902456 \mathrm{E}-10$	PBSW	$=0.8$	MJSW	$=0.3550788$
+CJSWG	$=4.22 \mathrm{E}-10$	PBSWG	$=0.8$	MJSWG	$=0.3550788$
+CF	$=0$	PVTH0	$=1.4398 \mathrm{E}-3$	PRDSW	$=0.5073407$
+PK2	$=2.190431 \mathrm{E}-3$	WKETA	$=0.0442978$	LKETA	$=-2.936093 \mathrm{E}-3$
+PU0	$=-0.9769623$	PUA	$=-4.34529 \mathrm{E}-11$	PUB	$=1 \mathrm{E}-21$
+PVSAT	$=-50$	PETA0	$=1.002762 \mathrm{E}-4$	PKETA	$=-6.740436 \mathrm{E}-3$

